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The Classification and Mixture Maximum Lik2lihood
Approaches to Cluster Analysis

G.J. McLachlan

1. INTRODUCTION

A common and very old problem in statistics is the separation of a

heterogeneous population into more homogeneous subpopulations. We con-

centrate here on the situation where the population of interest, 11, is

known or assumed to consist of, say, k different subpopulations Tl,...,T k,

and where the density of a p-dimensional observation x from i is

known or assumed to be f (x;6) for some unknown vector of parameters,
i--

e (i=l,...,k). In this context the problem may be formulated as follows:

Given a random sample of observations x l ,...,x from H, attempt to

allocate each x to the subpopulation to which it belongs. We let

(1,.-.,Y n ) denote the set of identifying labels, where Y i

if xj comes from Hi This would be the classical discrimination

problem if y were known a priori; a discrimination procedure would be

formed from the classified sample for the allocation of subsequent obser-

vations of unknown origin.

In what is sometimes called the classification maximum likelihood

procedure, 0 and y are chosen to maximize

n~~L (Xl, ... ,YXn;8,y) = HI f (xj;0) .(1 )
C. ~ ~ J.1 YJ ~ i

The maximization is over the set of values of y corresponding to

all possible assignments of the x to the various subpopulations

as well as over all admissible values of 0. The estimates of 0

and y so obtained are denoted by e and y respectively. The

*To appear in Vol. II of the Handbook of Statistics (edited by P.R.

Krishnaiah and L. Kanal).
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x,...,xIn  are then classified according to the estimates Yl,...,Vn;

for example, I is assigned to 1 if Y- g. This procedure

has been considered by several authors including Hartley and Rao [14],

John [17], Scott and Symons [31], and Sclove [30]. Unfortunately, with

this procedure, the y increase in number with the number of observa-

tions, and under such conditions the maximum likelihood estimates need

not be consistent. Marriott [23] pointed out that under the standard

assumption of normal distributions with common variance matrices, this

procedure gives definitely inconsistent estimates for the parameters

involved. More recently, Bryant and Williamson [4] extended Marriott's

results and showed that the method may be expected to give asymptotically

biased results quite generally.

A related approach is the mixture maximum likelihood method

considered by Day [5], and Wolfe [34], among many others. With this

approach Xl,...,xn are assumed to be a random sample of size n

from a mixture of l'...,n k in the proportions (c1,., k) -

Hence the likelihood

n k
I (_ ,...,!n;eC) - j TE I Ci  f i(x ;6)} (1.2)

~ " ~ j-l i-l

can be formed; the estimates of e and c obtained by maximizing
A A

(1.2) are denoted by ~ and ~ respectively. Each x can be

classified then on the basis of the estimated posterior probabilities

Pij (i-l,...,k) formed by replacing 8 and ~ with 6 and c in
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It can be seen that the mixture approach is equivalent to the

classification procedure with the additional assumption that

Yl''".Y n is an (unobservable) random sample from a probability

distribution with mass Li at i (i-l...,k). It appears to avoid

the asymptotic biases associated with the classification procedure

where at each step in the iterative process of computing the maximum

likelihood estimates each x is assigned outright to a particular sub-

population according to the estimate for yj. By contrast, the mixture

approach does not insist on definite membership to any subpopulation;

rather it gives an estimated probability of membership of each subpopulation.

Note that another approach to this problem is to proceed further and

adopt a Bayesian procedure in which all parameters are random variables

(Binder [2], Symons [32]).

A common assumption in practice is to adopt the normality model

xj ~ N (Ii, in Iti (i-1,....,k) .(1.3)

In this case 8 has 1 p(p+2k+l) elements, comprising the components
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of the k mean vectors V and the distinct elements of the common

covartance matrix E, and the density fi(x;e) is given by

f (x;J,,E) - (27r) - 11 2 p  -112 ex, i'~

We now proceed to consider the application of the classification and

mixture approaches under the normality model (1.3) which is assumed

to hold through to Section 5, where the condition of a common covari-

ance matrix is relaxed to cover the general case of unequal covariance

matrices.

2. CLASSIFICATION APPROACH

In principle the maximization process for the classification maximum

likelihood procedure can be carried out since it is just a matter of

computing the maximum value of the likelihood (1.1) over all possible

partitions of the n observations to the k subpopulations. However,

unless n is quite small, searching over all possible partitions is

prohibitive. It follows that yj g if

f( J ;)Jg ,E) > f(xl u , : , . (i-l,...,k) ,(2.1)

where p-i and : are the ordinary maximum likelihood estimates of

*i and E for a sample of normal observations classified according

to y. Hence the solution can be computed iteratively (John [17],

Sclove [30]). Starting with some initial clustering y, the U
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and E are estimated accordingly and then used to give a new estimate

of y on the basis (2.1), equivalent to allocating each observation to

the nearest cluster centre in terms of the estimated Mahalanobis distance.

Each step in the iterative process yields a value of the likelihood not

less than that at the previous step, and the iterations may be continued

until no observation changes clusters. Various starting values should be

taken in an attempt to locate the global solution. It will be seen in

the next section that the likelihood equations under the mixture approach

can be easily modified to be applicable also under the classification

approach. There are other procedures for finding the solution under the

classification approach; for example, the Mahalanobis distance version

of MacQueen's [20] k-means procedure, where the 11 and E are re-

estimated after each observation is allocated rather than waiting until

after all the observations have been allocated.

For the classification approach applied under the normality model

(1.3), Scott and Symons [31] showed that y corresponds to the partition

which minimizes the determinant of the pooled within-subpopulations sum

* of squares matrix

k

- i-l

where

ni

Wi q (X q -X)(X q-x )
q-1 -q 4 iq-

and xiq (q-l,...,n 1) denote the ni observations assinged to i

5
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according to y and x refers to their sample mean; see also

Friedman and Rubin [9] who originally suggested this criterion.

The minimization of IWI would appear to be a reasonable clustering

criterion regardless of the underlying distributions. Marriott

(22] has given a comprehensive account of the properties of this

criterion. It does have the tendency to produce clusters of roughly

equal size, although the modified version,

k
n log(WI - 2 i ni log ni

suggested recently by Symons [32], would appear to go some way to

overcoming this.

3. MIXTURE APPROACH

An excellent account of the computation of the maximum likelihood

estimates of pi,, and C for the mixture approach has been given by

Day [5]. Under the normality model (1.3), the posterior probabilities

P i=l,...,k;Jzl...,n) have the form

k
P exp(aix + bi)/( " exp(aI x +b )

ij - i r-1 Zr -j r

where

!r Or -r-l
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and

br 0 - (r + log( r/Cl)

for r = 1,...,k; that is, a1 =0 and b- 0. The maximum likeli-

hood estimates are evaluated from the equations

^ n ^

i PJ/n (3.1)
j=l

A A[i, A

= (Pijxj)/(n F_) (3.2)

and

A k n
7.= . (P ii/n) (xj- i(x j- )  (3.3)

which can be solved iteratively by substituting some initial values

for the estimates into the right-hand side of (3.1) to (3.3) to

produce new estimates on the left-hand side, which are then substi-

tuted into the right-hand side, and so on. These iterative estimates

can be identified with those obtained by directly applying the so-

called EM algorithm of Dempster et al. [6], which shows that the

estimates will converge to a local maximum irrespective of the

starting point. The iterative process should be started from several

points in an attempt to ensure that the global maximum is obtained.

7
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Day [5] has shown that considerable computing time can be saved

for k- 2 by reparametrizing the likelihood in terms of a, b, m,

and V, where

= C + 22

and

v~~ - + i2 (- 2) (;-l- -2) '

and the mean and covariance matrix of the mixture distribution; a

and b denote a2  and b2  with their subscripts suppressed since

k i 2 only. The maximum likelihood equations now can be written as

A n
m = .x./n ,(3.4)

j=l~

A n A A

V- 7. (x -m)(x -m)/n ,(3.5)

AA A AA A A -l A
a V 2 (l M-I)f-E 1 C 2 P 1 - 2' ('l (3.6)

and

b - - 2 + log(£2/£I) • (3.7)

A A

only values of a and b are needed in solving the above equations

as m and V are given explicitly.
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To obtain suitable initial values of a and b, it is suggested

for various bivariate subsets of the variables plotting the data points

and drawing a line which divides the data into two groups which have a

scatter that appears normal (see, for example, O'Neill [28] and

Ganesalingam and McLachlan [12]). Estimates of a and b can be

formed on the basis of this subdivision, proceeding as if the observa-

tions were correctly classified. There appears to be no difficulty in

locating the global maximum for p = I and 2, but for p > 3 there

are problems with multiple maxima, particularly for small values (less

than two, say) of the Mahalanobis distance between RI and 12*

= E- 1 W 1/21,

when n is not large (Day [51). Also, it is well-known (Day [5] and

Hosmer [16]) that maximum likelihood estimates based on a mixture of

normal distributions are very poor unless n is very large (for

example, n > 500). However, Ganesalingam and McLachlan [il] found
A

that although the maximum likelihood estimates a and b may not

be very reliable for small n, it appears that the proportions in
A A

which the components of a and b occur are such that the resulting

discriminant function, a'x +b, may still provide reasonable separation

between the subpopulations.

Note that the same set of equations here can be used as follows

to compute the estimates vi ~ * and y under the classification approach.
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At a given step y is put equal to that g for which P > Pii

(i=l,...,k) where, in the P! ' br is used without the

log(r/Icr ) term. Then on the next step the Vi and E are computed

from (3.1) to (3.3) in which, for each j, P is replaced by 1

(i=g) and 0 (i#g). The transformed equations (3.4) to (3.7) for

k=2 are also applicable to the classification approach with the above

modifications; that is, the term corresponding to E. in (3.6) is given.7

by n./n (i=1,2) while there is no term corresponding to log(E2 /E I) in

(3.7).

A simulation study undertaken by Ganesalingam and McLachlan [131

for k=2 suggests that overall the mixture approach performs quite

favourably relative to the classification approach even where mixture

sampling does not apply. The apparent slight superiority of the latter

approach for samples with subpopulations represented in approximately

equal numbers is more than offset by its inferior performance for

disparate representations.

4. EFFICIENCY OF THE MIXTURE APPROACH

4

We consider now the efficiency of the mixture approach for k=2

normal subpopulations, contrasting the asympotic theory with small

sample results available from simulation.

For a mixture of two univariate normal distributions Ganesalingam

and McLachlan [10] studied the asymptotic efficiency of the mixture

approach relative to the classical discrimination procedure (appropriate

for known y) by considering the ratio

10



e - {E(R) - Ro /0E( N ) - ( 0 (4.1)

where E(R) and E(R) denote the unconditional error rate of the

mixture and classical procedures respectively applied to an unclassi-

fied observation subsequent to the inital sample, and R denotes

their common limiting value as n -c o. The asymptotic relative

efficiency was obtained by evaluating the numerator and denominator

of (4.1) up to and including terms of order 1/n. The multivariate

analogue of this problem was considered independently by O'Neill

[28]. By definition the asymptotic relative efficiency does not

depend on n, and O'Neill [28] showed that it also does not depend

on p for equal prior probabilities, c, e 0.5. The asymptotic

values of e are displayed in Table 1 as percentages for selected

2
combinations of A , El, p, and n; the corresponding values of e

obtained from simulation are extracted from Ganesalingam and McLachlan

(11] and listed below in parentheses. It can be seen that the asymptotic

relative efficiency does not give a reliable guide as to the true

relative efficiency when n is small, particularly for A - 1. This

is not surprising since the asymptotic theory of maximum likelihood

for this problem requires n to be very large before it applies (Day

(5], Hosmer [16]). Further simulation studies by Ganesalingam and

McLachlan [11] in the univariate case indicate that the asymptotic

relative efficiency gives reliable predictions at least for n > 100

and A > 2.

11
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The simulated values for the relative efficiency in Table I

suggest that for the mixture approach to perform comparably with the

classical discrimination procedure it needs to be based on about two

to five times the number of initial observations, depending on the

combination of the parameters.

5. UNEQUAL COVARIANCE MATRICES

For normal subpopulations I1. with unequal covariance matrices

~~1i the classification procedure has to be applied with the restric-

tion that at least p+1 observations belong to each subpopulation

to avoid the degenerate case of infinite likelihood.

The likelihood equations under the mixture approach are given by

(3.1) to (3.3) appropriately modified to allow for k different co-

variance matrices (Wolfe [34]). Unfortunately, maximum likelihood

estimation breaks down in practice for each data point gives rise to

a singularity in the likelihood on the edge of the parameter space.

This problem has received a good deal of attention recently. For a

mixture of two univariate normal distributions, Kiefer [18] has shown
A

that the likelihood equations have a root 4 which is a consistent,

asymptotically normal and efficient estimator of 4 = (O',E')'. Quandt

and Ramsey [29] proposed the moment generating function (MGF) estimator

obtained by minimizing

h tix. 2X {i,(t i - e ln

i=l i-i

12



for selected values tl , . ..,th of t in some small interval (cd),

c < 0 < d, where

2 1 22
I(t) C I ci exp(vi t+-t )

is the MGF of a mixture of two normal distributions with variances
2 2

01 and 02. The usefulness of the MGF method would appear to be

that it provides a consistent estimate which can be used as a starting

value when applying the EM algorithm in an attempt to locate the root

of the likelihood equations corresponding to the consistent, asympto-

tically efficient estimator. Bryant [3] suggests taking the classifi-

cation maximum likelihood estimate of * as a starting value in the

likelihood equations.

The robustness of the mixture approach based on normality as a

clustering procedure requires investigation. A recent case study by

Hernandez-Alvi [15] suggests that, at least in the case where the

variables are in the form of proportions, the mixture approach may be

reasonably robust from a clustering point of view of separating samples

in the presence of multimodality.

6. UNKNOWN NUMBER OF SUBPOPULATIONS

Frequently with the application of clustering techniques there is

the difficult problem of deciding how many subpopulations, k, there

are. A review of this problem has been given by Everitt (8]; see also

.1



Engelman and Hartigan [71 and Lee [19]. With respect to the classifica-

tion approach Marriott [21] has suggested taking k to be the number

which minimizes k2 1WI. For heterogeneous covariance matrices there

may be some excessive subdivision, but this can be rectified by recombin-

ing any two clusters which by themselves do not suggest separation was

necessary.

With the mixture approach the likelihood ratio test is an obvious

criterion for choosing the number of subpopulations. However, for

testing the hypothesis of, say, k versus k2 subpopulations

(kI < k2), it has been noted (Wolfe [35]) that some of the regularity

conditions are not satisfied for minus twice the log- likelihood ratio

to have under the null hypothesis an approximate chi-square distribution

with degrees of freedom equal to the difference in the number of parameters

in the two hypotheses. Wolfe [35] suggested using a chi-square distribution

with twice the difference in the number of parameters (not including the

proportions), which appears to be a reasonable approximation (Hernandez-Alvi

[15]).

7. PARTIAL CLASSIFICATION OF SAMPLE

We now consider the situation where the classification of some of

the observations in the sample is initially known. This information can

be easily incorporated into the maximum likelihood procedures for the

classification and mixture approaches. If an x is known to come from,

say 17 then under the former approach y - r always in the associated

iterative process while, under the latter, P is set equal to l(i- r)

14



and O(i r) in all the iterations. In those situations where there

are sufficient data of known classification to form a reliable discri-

mination rule, the unclassified data can be clustered simply according

to this rule and, for the classification approach, the results of

McLachlan [24,25] suggest this may be preferable unless the unclassified

data are in approximately the same proportion from each subpopulation.

With the mixture approach a more efficient clustering of the unclassified

observations should be obtained by simultaneously using them in the

estimation of the subpopulation parameters, at least as n w, since

the procedure is asymptotically efficient. The question of whether it

is a worthwhile exercise to update a discrimination rule on the basis of

a limited number of unclassified observations has been considered recently

by McLachlan and Ganesalingam [26). For other work on the updating problem

the reader is referred to Titterington [33], Murray and Titterington [27],

and Anderson [1].
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TABLE 1

Asymptotic Versus Simulation Results for the

Relative Efficiency of the Mixture Approach

p=l , n=20 p=2 , n=20 p-3, n=40

A Ei=0.25 FI =0.50 el=0.25 LI =0.50 ELI =0.25 EL =0.50

1 0.25 0.51 0.34 0.51 0.42 0.51

(33.01) (25.12) (46.71) (63.11) (25.00) (43.39)

2 7.29 10.08 9.36 10.08 10.51 10.08

(22.05) (17.74) (25.73) (16.26) (16.28) (14.51)

3 31.41 35.92 35.13 35.92 36.78 35.92

(19.57) (23.54) (43.91) (29.63) (29.01) (23.46)
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